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Slit Height Corrections in Small Angle X-ray Scattering* 

:BY PAUL W. SCHMIDT AND ROBERT HIGHT, JR. 

Dept. of Physics, University of Missouri, Columbia, Mo., U .S .A .  

(Received 11 May 1959 and in revised form 15 October 1959) 

A method of correcting experimental small angle X-ray scattering curves for the effects of the height 
of the collimating slits is developed. The method has the advantage of eliminating the need for 
numerical differentiation of the experimental curve. An expression suitable for numerical calculation 
is given, and an analysis is made of the error in the numerical approximation. The results of some 
applications of these slit correction techniques are discussed. 

Introduction 

Small  angle X-ray  scattering collimation systems 
ordinari ly use slits instead of pinholes in order to give 
sufficient scattered intensi ty.  Wi th  slit collimation, 
at  a par t icular  angular  setting of the collimation sys- 
tem, the detector records the scattering from a range 
of angles, ra ther  t han  from a single angle. This 
imperfect  collimation leads to a distort ion of the 
curve of the scattered in tens i ty  as a function of scat- 
tering angle. 

The process of correcting exper imenta l  scattering 
curves for collimation errors, which will be referred 
to as 'unsmearing ' ,  has been considered by  several 
authors. Guinier & Fournet  (1947a, b) and Du Mond 
(1947) gave a rigorous solution for the case of rect- 
angular  slits of infinite height  and negligible width. 
Their  method  was adapted by  Kra tky ,  Porod & 
Kahovec (1951) for use with m a n y  collimation systems 
of finite slit height. 

These unsmear ing methods have the disadvantage 
tha t  they  require a numerical  differentiat ion of the 
exper imenta l  curve. Numerica l  differentiat ion can be 
quite inexact,  especially when applied to an ex- 
per imenta l  curve which is known only approximately.  
Although with care good results can be obtained using 
the above-mentioned unsmear ing equations, as was 
shown by  the numerical  calculations of Fournet  & 
Guinier (1947b) and Anderegg and co-workers (1958) 
and  by  the modified p lanimeter  of Gerold (1957), 
a way  of unsmear ing the exper imenta l  da ta  without  
different iat ing the exper imenta l  curve would improve 
the accuracy of the unsmeared curve and also could 
s impl i fy  the numerical  calculations. 

In  the next  section, the unsmear ing equation of 
Kra tky ,  Porod & Kahovec (1951) is modified to 
el iminate the need for numerical  differentiation. The 
last  section describes numerical  calculations and some 
applications of the unsmear ing process. 

* Work supported by Shell Development Corporation and 
the ~ational Science Foundation. 

Theory  of the u n s m e a r i n g  process  

For slits of negligible width,  the exper imental  scattered 
in tens i ty  F(h) for a scattering angle h is related to the 
perfect collimation scattered in tens i ty  I(h) by the 
equat ion (Guinier et al., 1955) 

F(h) = W(c?)I[(hg + q~e)½]dq~ , 
0 

where W(~) is a weighting function, the form of which 
depends on the coll imation system. For  slits of 
negligible width and infinite height, W(~) = 1. Guinier  
& Fournet  (1947a) and Du Mond showed tha t  in this  
case I(h) could be found from the relation 

2 f °° dt 
I ( h ) = - ~  0 (h2+t2) ½ F'[(h2+t2)½] " (1) 

Kra tky ,  Porod & Kahovec (1951) used similar  methods  
to t reat  the case of a Gaussian weighting function 

W(~)=2p(~)-½ exp (-p~2), 

where p is a constant  determined by  the slit height.  
A small  p corresponds to high slits, and a large p to 
small  slits. Kra tky ,  Porod & Kahovec showed that  for 
this weighting function one can obtain l(h) from 

exp (p2h2) I °° dt I(h) - - -P(~)-~--  ..0 (t2+h2) ½ N'[(t2+h2)½], (2) 

where 
N(h) = F(h) exp ( - p2h2) . 

Both (1) and (2) require numerical  differentiat ion of 
the exper imenta l  curve. This differentiat ion can lead 
to errors when applied to an exper imenta l  curve which 
is known ordinari ly only to a few per cent. In  addit ion,  
an unsmear ing equat ion which does not involve nu- 
merical  differentiat ion can s implify the numerica l  
calculations. Equat ion  (2) will now be modified to 
el iminate the need for differentiat ing the exper imenta l  
curve. 

Changing variables in (2) gives 
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I(h) = exp (p~h ~) I ~ ds N'(s) 
p (z)½ ~ (s~- h~)½ 

exp (peh ~) ds [N'(s) 
p(~)½ l : ( s 2 - h ~ )  ½ i _  

p(~1½ 

(s~- h~)½ i T  + 

Integration by parts yields 

hN(h) hN(h)] 
+ s~ si j 

f 
oo ds } 

+ [hF(h) - sF(s )  exp [-p~(s~-h~)]] • (3) 
( ~ -  h~)~/~ 

In (3) the perfect collimation scattered intensity is 
expressed not in terms of the first derivative of the 
experimental curve, but in terms of the experimental 
curve itself. As (3) is a rearrangement of (2), it contains 
no more and no less information than (2). A numerical 
computation of I(h) from (2) in which the experimental 
values of F(s) were fed into the computer and then 
differentiated would represent a rearrangement of the 
calculation of I(h) from (3), and so the two methods 
could be expected to give similar results. When F(s) 
is differentiated before being used in (2), there is a 
possibility of obtaining a larger error from (2) than 
from (3). The greatest advantage of (3), however, is 
that  it simplifies the numerical calculations. 

Numer ica l  methods  

For numerical evaluation, the integral in (3) was 
broken up into integrals over intervals of length zJh 
small enough that  

G(s) = hF(h) - sF(s) exp - (pes 2 - p2h2) 

could be approximated by a linear function which 
equaled G(s) at the end points of the intervals. This 
particular method of linear approximation was used 
to permit numerical evaluation of the improper inte- 
gral. After two partial integrations over each sub- 
interval, the numerical approximation can be expressed 

h (s 2 -  h2) 3/' j~ (3h)a i=o 
where 

h=jZlh  

h~ = (i + j ) A h  

2i  2= -- Ri+l + 2R~-- Ri-1 

R~= Ah(i2+ 2ij) ½ . 
As co  

A i i - R ~ - A h  . 

(3) becomes 

1 
I (h ) -  j2p(z)½(Ah) 

+ 1)½F( jAh) -  2 :  T ~ F [ ( i + j ) A h  , (41 
i = l  

where 

Ti j=(Ah)-~( j+i) (A~})  exp [ - (pAh)2(2 i j+ i2 ) ]  . 

Equation (4) is in a form suitable for numerical 
evaluation. 

Investigation shows that  the error in the numerical 
approximation (4) can be made as small as desired, 
provided Ah is sufficiently small. Because of the 
singularity of the integrand at the lower limit in (3), 
the sub-integral over the interval h _< s _< h + A h gives 
the largest contribution to the integral. Therefore, for 
a given accuracy, this sub-integral requires a smaller 
Ah than do the other sub-integrals. To simplify the 
numerical calculations, Ah was chosen to provide 
sufficient accuracy ha the other sub-integrals. Correc- 
tion terms then were calculated to improve the 
accuracy of the calculation of the first sub-integral. 

The corrections express the change in (4) that  is 
caused by breaking the sub-integral over the interval 
/z < s _< h + A h  into 2, 4, and 8 equal parts and using 
a linear approximation for G(s) in each part. The term 
C½ gives the correction found by dividing the sub- 
integral in two parts. Of these two parts, only the 
integral over h _< s < h+  (Ah)/2 was appreciable, and 
the other part was neglected. Similarly, C¼ and C~ 
express the additional correction which comes from 
dividing the sub-integral over h <_ s <_ h+ (Ah)/2 into 
two and four parts, respectively, and considering 
only the parts nearest the lower limit h. The other 
parts are found not to be appreciable. The correction 
terms C~ are given by 

C~ = D~ [ F o -  2E~F~ + E ~  F2~] 
where 

F~ = F ( h + k A h )  

D~ = ( jpAh)- l~-½E(2j /k+ 1)½-( j /k+  1)~] 

E~ = (1 +k/j)  exp [ - ( p A h ) 2 ( 2 k j + k 2 ) ] .  

If I0(h) is the value of I(h) found from (4), the cor- 
rected value Ic(h) is obtained from 

L (h) = I0 (h) + C½ + C~ + C~ + . . . .  

Calculation of the C~ can give an estimate of the 
accuracy of the numerical approximation (4). If A h 
is small enough to give a good approximation, the C~ 
should be small, and one should find that  C½ > C¼ > C~.. 
As the C~ are expressed as small differences of larger 
terms, the relative error in the C~ will be greater than 
the relative error in the Fk. The values of the C~ 
should be compared with the absolute errors in the F~. 
If these errors are of the same order of magnitude as 
the calculated C~, the corrections are not meaningful, 
and (4) gives the best approximation that  can be found 
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f rom the  exper imenta l  data.  The error in (4) then  can 
be expected to be of the same order of magni tude  as 
the  size of the terms in C½. The relat ive error is 
ordinar i ly  less t h a n  twice the relat ive error in the 
exper imenta l  curves. 

The unsmear ing  process was tested by  applying it  
to exper imenta l  curves for which the unsmear ing 
integral  could also be evaluated numerical ly .  The 
results are plot ted in Fig. 1. Before calculating curve A, 
the  slit smearing was found for a perfect coll imation 
in tens i ty  proport ional  to the inverse fourth power of 
the angle. This sli t-smeared intensi ty,  which can be 
expressed in  terms of t abu la ted  functions, was then  
used as the  exper imenta l  in tens i ty  for calculating 
curve A. For curve B a similar  procedure was used 
wi th  a perfect coll imation in tens i ty  proport ional  to 
the inverse second power of the angle. Curve C gives 
the effect of the unsmear ing process on a constant  
exper imenta l  scattered intensi ty.  Subst i tut ion of a 
constant  F(s) in (3) shows tha t  the unsmeared in- 

tens i ty  is also constant  and tha t  the  magni tude  of the  
constant  is unchanged in the unsmear ing  process. 
Curves A and  B in Fig. 1 are curves proport ional  
respectively to the inverse 4th and  2nd powers of the  
scattering angle. A constant  in tens i ty  is d rawn for 
curve C. The points in Fig. 1 were calculated from (4) 
and so show the degree of accuracy given by  the un- 
smearing process. To make the unsmear ing  calcula- 
tions for curves A and B, the sli t-smeared intensi t ies  
were plotted, and the values of F(s) used in (4) were 
read from these graphs. As this same process would 
be used in applying (4) to experhnenta l  data,  the  
results of Fig. 1 can give an idea of the accuracy of 
the unsmear ing procedure. In  curve C, F(s) was taken  
to be exact ly  constant,  and so no graph-reading errors 
would appear. 

The errors in Fig. 1 are almost  all less t han  a few 
per cent. Because of the errors inherent  in graph 
reading, greater precision would be difficult  from 
exper imental  data.  For the larger errors, which occur 
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Fig. 1. A. The solid line gives the perfect collimation scatter- 
ing proportional to the inverse fourth power of the angle. 
The points show the results of applying the unsmearing 
process to the slit-smeared intensity calculated for perfect 
collimation scattering proportional to the inverse fourth 
power of the angle. B. The solid line gives the perfect 
collimation scattering proportional to the inverse second 
power of the angle. The points show the results of applying 
the unsmearing process to the slit-smeared intensity cal. 
eulated for a perfect collimation scattering proportional to 
the inverse second power of the angle. C. The points give 
the unsmeared intensity calculated for the constant scat- 
tered intensity shown by the horizontal line. 
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Fig. 2. The effect of the unsmearing process on a curve 
containing a series of maxima. The scattering curve cal- 
culated for infinitely high collimating slits and spherical 
particles was used for the experimental curve. The curve 
in Fig. 2 is the theoretical intensity for perfect collimation 
and spherical particles, for which 

I(h) = 9 [(sin x - - x  cos x)/xS] 2, 
where x=4=a~.  -1 sin (~/2) 

a is the sphere radius, ~ is the X-ray wavelength, and ~ is 
the scattering angle. The circles are the points calculated 
by  the unsmearing process, using (4). 
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at small  angles in curve A, use of the correction terms 
C~ will e l iminate  most  of the error. 

The unsmear ing  process was tested in practice by  
applying it  to some exper imenta l  scattering curves 
obtained in a s tudy  of a luminum hydroxide gel (Bale, 
1959). The results indicate tha t  the unsmear ing process 
can be used rout inely in analysis  of scattering data.  
For the curves considered, the accuracy of the da ta  
did not jus t i fy  calculation of the C~. 

Equat ion  (4) is in a form which allows re la t ively  
easy programming for a digital  computer.  As the T~j 
are the same for all exper imenta l  curves using the 
same equipment ,  a point  on the unsmeared curves can 
be calculated in a few minutes  with a desk computer  
when tables of the Tkj are available.  The authors can 
supply tables of the Tgj and C~ for Ah=O.O01 rad. and 

p =  1225(~)½. 

Al though a smooth curve m a y  often be used instead 
of the actual  da ta  points in numerical  calculation from 
(3) or (4), there is nothing in the collimation correction 
method tha t  requires the use of a smooth curve. There 
m a y  be occasions when it is preferable to use the actual  
da ta  points in (3) or (4). 

Fig. 2 shows the effect of the unsmear ing  process on 
a curve containing a series of maxima.  The scattering 

curve calculated for inf in i te ly  high coll imating slits 
and  spherical particles (Schmidt, 1955) was used for 
the exper imenta l  curve. The unsmear ing  procedure 
sharpens the m a x i m a  of the exper imenta l  curve, and  
the unsmeared  curve agrees well wi th  the spherical  
scattering curve for perfect collimation. 

The authors  would like to express their  thanks  to 
Prof. Cecil Gregory and  Mrs Darlene Slinger for their  
cooperation in making  the Burroughs E l 0 2  computer  
avai lable  for the numerical  calculations. 
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Using a back-reflection, flat-film camera and an extrapolation technique, precision determination 
of the lattice constant of sodium chlorate has been made at different temperatures between the range 
30-232 °C. From these, by a graphical treatment, the coefficients of thermal expansion at various 
temperatures have been evaluated. An equation is also given for evaluating the coefficient of expan- 
sion at any temperature. 

These coefficients of expansion show a temperature rate of variation higher than the one reported 
by Sharma (1950a) from macroscopic measurements. An explanation for this difference is attempted 
in terms of imperfections in a single crystal. 

In troduct ion  

Sodium chlorate has been the subject  of numerous 
studies because of its simple structure and  m a n y  of 
its interest ing properties. Zachariasen (1929) gave the 
length of the uni t  cell as 6.570 _+ 0.006 kX. (6.583 /~). 
Htiber (1940) studied the mixed crystals of sodium 
chlorate and  sodium bromate  and gave the latt ice 
constant  of sodium chlorate as 6.568*_+ 0.001 •. Sol- 
helm, Konrad  & Vegard (1947) report  a value of 

6.5722* (converted from kX. to /~ units). In  view of 
the discrepancies in these values an accurate re- 
de terminat ion of the latt ice constant  was thought  to 
be worthwhile. 

Data  on the thermal  expansion of this salt  have been 
reported by  Mason (1946) and Sharma (1950a). Mason 
quotes the mean  values obtained by  Miss Armstrong 

* These  v a l u e s  are  t a k e n  f r o m  Structure Reports. 
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